
brat : Aligned Multi-View Embeddings for Brain MRI Analysis

Under Review

Abstract

We present brat (brain report alignment transformer), a
multi-view representation learning framework for brain
magnetic resonance imaging (MRI) trained on T1-contrast
enhanced MRIs paired with clinical reports. Brain MRIs
present unique challenges due to the presence of numerous,
highly varied, and often subtle abnormalities that are local-
ized to a few slices within a 3D volume. To address these
challenges, we introduce the largest brain MRI dataset to
date, containing approximately 80,000 3D scans with cor-
responding radiology reports, and propose a multi-view
pre-training approach inspired by advances in document
retrieval. We develop an implicit query-feature matching
mechanism and introduce concepts from quality-diversity to
obtain multi-view embeddings of MRIs that are aligned with
the clinical features given by report sentences. We eval-
uate our approach across multiple vision-language and vi-
sion tasks, demonstrating substantial performance improve-
ments. By publicly releasing our suite of model weights, we
aim to facilitate further research in brain MRI analysis.

1. Introduction

Magnetic resonance imaging (MRI) is standard-of-care
imaging performed for diagnosis and management of neu-
rodegenerative diseases as well as cancers occurring in the
brain. Modern vision-language models (VLM) have shown
the capability to generate descriptive free-text for natural,
and even medical images [49]. With the rapid increase in
the number of diagnostic imaging performed compared to
the number of radiologists, the availability of models that
can reliably map medical images to radiology reports could
assist radiologists in accelerating report generation and re-
ducing time and effort needed to perform diagnosis [23].
Furthermore, vision-language pre-training (VLP) has been
shown to produce strong vision backbones for robust tu-
mor segmentation [34]. However, the scarcity of large-scale
image-text datasets and the limited generalization of con-
ventional vision-language methods designed for 2D images
have hindered the development of effective vision-language
approaches for complex 3D imaging modalities.

Clinical reports for medical images, especially detailed

The 2.8 x 1.7 cm peripherally enhancing right 
cerebellar metastasis exhibits characteristics that 
may suggest radiation necrosis. [...] Enhancing 
lesions are noted in the left inferior temporal lobe, 
left posterior inferior temporal lobe, and right 
inferior frontal lobe. [...] No hydrocephalus is 
present. The orbital soft tissues and cavernous 
sinus appear unremarkable.
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Figure 1. (Left) Brain MRI reports contain rich and diverse infor-
mation that relate to different aspects of the image. Colours are
used to associate report sentences with corresponding regions on
the scan. The report was cut off ([...]) to only contain findings that
can be seen on this 2D slice. (Right) Drawing parallels to multi-
vector retrieval Zhang et al. [52], we align multi-view embeddings
of the MRI with clinical features (sentences) given in the reports.

cross-sectional (3D) scans such as CT and MRI, often con-
tain rich, diverse information, with multiple sections ad-
dressing different aspects of the scan. Existing methods that
aim to learn joint representations of medical images and
their reports often overlook this complexity. Instead, it’s
common to adopt architectures similar to those used in nat-
ural image captioning, where descriptions typically consist
of a single sentence, and are represented via a single em-
bedding. This approach fails to fully leverage the richness
of clinical narratives as a learning signal for better image
representations [11, 25].

We address the limitation of prior works by introduc-
ing the largest existing multimodal brain MRI dataset, con-
taining approximately 80,000 3D MRIs and paired reports,
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Figure 2. Our brat framework. Our Pairwise View Alignment (PVA) algorithm (described in Section 3.2) and quality-diversity via Deter-
minental Point Processes (DPPs) (described in Section 3.2) lead to clinically aligned multi-view embeddings of the MRI.

and propose a new VLP framework called brat (brain report
alignment transformer). brat is based on the premise that,
similar to documents, clinical reports can consist of ex-
tensive text describing a wide range of findings. Multi-
view embedding approaches have been used in document
retrieval to represent the diversity of information in a docu-
ment and then mapped to sub-units of the user query [22].
In our work, the learnable multi-view embeddings are used
to represent the 3D brain MRI, whereas the correspond-
ing reports are sub-divided into sentence embeddings or
sub-units. By aligning these sub-units with brain MRIs
via contrastive learning, we implicitly encourage the multi-
view image embeddings to represent the clinical features
described by the sentences (see Figure 1). We ensure that
distinct image views are aligned with sub-unit sentence em-
beddings through a Pairwise View Alignment (PVA) match-
ing algorithm. We further enhance diversity of the multi-
view embeddings via quality diversity (QD) loss based on
Determinental Point Processes [26] (DPPs).

brat sets a new benchmark for image-to-text and text-to-
image retrieval in both brain MRIs and lung CTs. We also
pre-train and release a range of vision backbones using brat
that lead to significant performance improvements.

Our contributions are as follows:
(i) We propose a new multi-view vision-language repre-

sentation learning framework for complex 3D medi-
cal images that draws parallels to document represen-
tation learning.

(ii) We introduce concepts from Quality-Diversity by
applying DPPs that encourage diverse and aligned
multi-view embeddings.

(iii) We pre-train and release a suite of brain MRI founda-
tion models trained on the largest existing dataset of
paired brain MRIs and reports.

(iv) The model is evaluated across a wide range of
datasets and tasks and shows promising results.

2. Related Work
Multi-vector document retrieval. Document retrieval,
which involves retrieving documents based on user queries,
has seen significant improvements through the use of multi-
vector retrieval methods, instead of traditional single-vector
approaches. In single-vector retrieval, documents are repre-
sented as a single embedding, limiting the ability to capture
the diversity of information in documents [21, 32]. In con-
trast, multi-vector embeddings offer more versatile query-
document interactions, which better represents the variety
of information in documents. One of the important works is
ColBERT [22, 38], which computes query-document simi-
larity by selecting the most similar document token for each
query token and aggregating the similarities across a doc-
ument. However, these ideas have not yet been applied
to image-text datasets, even though text like radiology re-
ports is often of document length. Zhang et al. [52] em-
phasized that documents typically contain multiple seman-
tic units, each potentially relevant to different queries, and
proposed using multi-view embeddings to represent these
diverse aspects. Drawing inspiration from their method, we
treat brain MRI scans as “documents” and report sentences
as corresponding “queries”, to enhance representation and
retrieval.

Vision-Language Pre-training (VLP). VLP on large-
scale datasets of paired images and captions is an effective
way to learn image-representations for both vision [10, 37,
41] and vision-language tasks [1, 8, 45]. Vision-language
datasets occur naturally in the medical imaging domain, as
radiologists routinely write reports to describe findings in
medical scans. Large-scale public datasets are predomi-
nantly available for chest X-rays [5, 16, 20], and as such
most approaches for medical imaging focus on this do-
main [46, 47, 53, 54]. Recently there have been efforts to
publish datasets in more advanced imaging modalities, such
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Figure 3. Conventional query tokens collapse into a single repre-
sentation as training progresses. The multi-view embeddings of
brat , on the other hand, are diverse and spread out. The plot was
obtained by using multi-dimensional scaling to plot the 32 query
tokens on a 2D plane based on their pairwise euclidean distances
averaged across a random sample of 32 images.

as lung CTs [9]. Some existing models attempt to capture
the fine-grained features of medical images by aligning lo-
cal image feature patches with text tokens [15, 44]. How-
ever, this is limited by the fact that individual text tokens are
not necessarily representative of clinical features and image
feature patches are spatially restricted to a specific location
in the image. In addition, chest X-rays are 2D images and
their reports usually only contain 2-3 image-descriptive sen-
tences. 3D scans such as brain MRIs, typically have reports
that are several times larger. Recently the first models have
been trained on large 3D lung CTs and report datasets, re-
lying mainly on scale to achieve good results [49].

Some VLMs focus on using learnable latent variables
that learn to efficiently compress visual representations [18,
27]. BLIP-2 [27] employs a Q-Former model that uses
“querying tokens” as learnable latents that align cross-
modal representations. We adopt a similar architecture,
with the querying tokens representing the learnable multi-
view embeddings that are aligned to clinical features but
can freely attend to the image, enabling to capture features
that are not localized spatially in the image.

Quality-diversity of learned features. Increasing diver-
sity to avoid informational collapse is common in self-
supervised learning (SSL), where information maximiza-
tion methods are used to achieve this [4, 50]. In terms of di-
versity for representing different aspects of an input, Zhang
et al. [52] in document retrieval has a similar goal and uses
a loss that penalizes high pairwise similarity between em-
bedding vectors. Determinental point processes (DPPs),
on the other hand, have been used in particular for rec-
ommender systems, summarisation, or dataset/batch sam-
pling, where trade-offs between quality and diversity are de-
sired [26, 28, 39]. Although these trade-offs are also impor-
tant considerations in (multi-view) representation learning,
DPPs have not yet been applied in this domain. We show
that they are well-suited for this and lead to better perfor-
mance than simple pairwise similarity reduction.

Brain MRI analysis. The scarcity of large-scale brain
MRI datasets (and lack of image-text datasets) has led re-
searchers to pool smaller public datasets [31] and focus on
SSL. SSL tasks involve reversing various image augmenta-
tions [33, 43, 51], masked image modeling [3, 13, 19, 42],
and contrastive losses [7]. Other efforts aim to learn mod-
els that can be generalized across MRI modalities [24, 48].
Downstream applications are often focused on segmenta-
tion, with notable datasets being the BraTS series [2, 30],
on which we evaluate our models. Our work uses the largest
pre-training dataset combining brain MRI with paired radi-
ology reports to learn an effective representation of patholo-
gies visible in brain MRIs.

3. Methods

3.1. The AnonBrain Dataset

We collected a comprehensive dataset of brain MRI scans
and their corresponding clinical reports from a cancer cen-
ter, covering the period from 2012 to 2017. These scans
were primarily obtained to monitor brain metastases and tu-
mors in cancer patients, resulting in a dataset rich in posi-
tive findings (89.7% of scans show abnormalities, average
of 134 words or 8 sentences per report) and representative of
a diverse patient population. We also collected the clinical
reports corresponding to these images, as well as extensive
demographic data, primary diagnosis, ongoing chemother-
apy and radiotherapy treatments, and survival information,
which will be utilized in future studies.

Our dataset includes 77,228 brain MRI image-report
pairs from 24,262 unique patients. To develop our model,
we performed a patient-wise split of the data into 75,142
examples for training, 945 for development, and 1,141 for
the test set.

As the focus of this work is on learning image represen-
tations from brain MRIs, we ensured that all report content
was visually grounded in the corresponding images. For ex-
ample, keyword filtering revealed that 94% of reports make
references to prior scans. To efficiently remove these ref-
erences, information from excluded MRI modalities, and
protected health information (PHI), we developed a PHI-
enabled GPT-4 based pipeline. This pipeline re-wrote re-
ports and extracted structured data simultaneously. Liu et al.
[29] demonstrated that GPT-4 performs well on radiology
report processing; and indeed we found that our pipeline
achieved an annotation accuracy of 96% on a gold standard
set of 50 manually annotated reports. Annotating all the
reports cost approximately $1,600, which is significantly
lower than the cost of expert annotation. More information
on the dataset is provided in Appendix 8.

We are exploring options to make this dataset available
to the wider research community.



Characteristic Value

Word Count (Q1, Median, Q3) 115, 134, 156
Sentence Count (Q1, Median, Q3) 7, 9, 11
Age (Q1, Median, Q3) 45, 58, 68
Any Abnormality (%) 87.9
Prior Surgery (%) 38.1
Enhancing Lesions (%) 47.6
Midline Shift (%) 5.4
White Matter Changes (%) 43.6
Pituitary Gland Abnormality (%) 2.3
Hydrocephalus (%) 2.6
Biggest Mass Length (%) <1cm (17.7), 1-2cm (14.5)

>2cm (18.8)
Enhancing Lesion Count (%) 1 (27.0), 2-6 (23.0)

7-15 (1.6), >15 (2.3)
# of Unique Surgeries 32,428
# of Enhancing Lesion Locations 95,815

Table 1. Brain MRI dataset characteristics. For reference, the Con-
ceptual Captions [40] dataset has 10 tokens (less than 10 words)
per image.

3.2. The brat Framework
brat is a vision-language contrastive pre-training framework
that represents images via aligned multi-view embeddings.
To obtain the multi-view embeddings, we adopt a similar
base architecture as Q-Former [27], with brat using learn-
able latents that extract multi-view embeddings by cross-
attenting to the MRI features (see Fig. 2). A 3D vision
model M is used to extract features from an MRI image I ,
resulting in a set of feature maps M(I) = A ∈ Rl×DI with
l feature maps of dimension DI . We mainly use Densenet-
121 [14] as M , which outperformed ViT and Resnet-50
in our preliminary experiments. The set of learnable la-
tent tokens Q = [q1, . . . , qNQ

] where ql ∈ RDQ , inter-
act with the image encoder features A to extract a set of
image-informed multi-view embeddings EI(Q, I) = V ,
where V = [v1, . . . , vNQ

] with vi ∈ RDV . The text en-
coder ER takes a brain MRI radiology report and returns
sentence embeddings that capture the clinical features de-
scribed in them: ER(R) = F , where F = [f1, . . . , fNS

]
with fi ∈ RDF representing the i-th sentence. We obtain
sentence embeddings fi by averaging all token embeddings
of the sentence. As DF = DV , DF is used in the rest of the
paper for clarity. Training and implementation details are
provided in the Appendix.

Pairwise View Alignment Existing approaches that use
latent variables to learn to extract image features, such
as Q-Former, often exhibit embedding collapse, where the
learned latents converge into a single representation [6] (an
illustration is given in Figure 3). Volumetric brain MRI
scans contain diverse visual elements that are very com-

plex due to highly variable appearance of pathology such
as primary brain tumors and metastastic tumors, as well as
impact on normal tissue from such tumors such as mass ef-
fect pushing normal tissue structures or excessive accumu-
lation of cerebrospinal fluid. Capturing such a complex set
of findings requires larger flexibility. However, given the
complexity of brain MRIs, which frequently contain a di-
verse range of findings—analogous to how documents com-
prise distinct semantic units—we hypothesize that multi-
view embeddings provide a more suitable representation
for brain MRI images. Multi-view embeddings have been
shown to improve document representations by capturing
different semantic elements within a text [52]. Inspired by
this, we assume that individual sentences in radiology re-
ports correspond to distinct clinical features, and we aim
for our multi-view embeddings to encapsulate these same
clinical characteristics (see Figure 1). To achieve this, we
introduce a two-step approach: (1) Pairwise View Align-
ment (PVA) to align embeddings with clinically meaningful
features, and (2) quality-diversity repulsion using determi-
nantal point processes (DPPs) to encourage diversity in the
learned representations.

Figure 4. Juxtaposition of 8 query tokens from Q-Former (up-
per row) and the same 8 query tokens from brat (lower row). The
collapsed Q-Former queries all attend to the same image regions,
whereas the multi-view embeddings of brat focus on distinct fea-
tures.

PVA ensures that each image view embedding can only
be matched to a single sentence feature, preserving the gran-
ularity of the report in the image representation. Embed-
dings are matched based on their cosine similarities. A step-
by-step description of the approach is given in Algorithm 1.

Quality-Diversity via DPPs Empirically, we find that
pairwise view alignment alone does not sufficiently encour-
age diverse features in multi-view embeddings. Thus, we
adopt ideas from quality-diversity (QD) to address this is-
sue. The idea behind QD is to have many diverse solutions
to tackle a problem from different angles. This fits our prob-
lem well, as we want the different multi-view embeddings
to focus on different features of the image. We consider
as feature diversity the diversity of the attention maps over
the image feature maps A of the multi-view embeddings V .
A naive option to address this would e.g. be pairwise repul-
sion between the embeddings vi by maximizing their cosine
dissimilarities. However, to avoid the embeddings collaps-



Algorithm 1 Pairwise View Alignment
Input: Normalized multi-view embeddings of an image
V = [v1, . . . , vNQ

] ∈ RNQ×DF and normalized clinical
features matrix of a report F = [f1, . . . , fNS

] ∈ RNS×DF

Output: Match pairs of multi-view embeddings and clini-
cal features PM

Algorithm:
1: Compute similarities between all multi-view embed-

dings V and clinical features F :
Sv,f ← V FT ∈ RNQ×NS

2: Initialize list Pall with all similarity pairs ⟨vi, fj⟩ =
Sv,f [i, j] sorted in descending order of similarity

3: Initialize an empty list of matched pairs PM

4: while Pall is not empty do
5: Select a pair of indices (sv, sf ) with the highest sim-

ilarity (top of stack): ⟨vsv , fsf ⟩ = max(Pall)
6: Add (sv, sf ) to the list of matched pairs PM

7: Remove all pairs from Pall with indices sv for image
features or sf for report features (each query token
and sentence feature can only be matched once)

8: end while

ing into unimodal representations (where all the attention
focuses on a single feature map) and to capture overall di-
versity across all multi-view embeddings, we model quality
and diversity using DPPs [26]. We show in Table 2 that this
is a crucial step.

DPPs are distributions over subsets of a fixed ground set
that attribute higher probability to sets that are diverse. In
our case, we want to maximize the probability of our set
of multi-view embeddings V under the DPP. We consider
quality-diversity with respect to the cross-attention maps
C = [c1, . . . , cNQ

] where cj ∈ RD(=nfx·nfy·nfz) con-
tains the attention values from multi-view embedding vj to
the 3D feature maps representing the image. As quality of
each embedding token we use Shannon entropy of its cross-
attention map, denoted as hi ∈ R+:

hi = H(ci) = −
∑
k

ci(k) log ci(k), (1)

where k indexes over spatial positions. A higher entropy
implies a more uniform attention distribution, which we in-
terpret as higher quality. This prevents the attention maps
from collapsing to trivial, high-diversity solutions where
each query attends to a single point. The attention maps
ci themselves are considered as the diversity features. The
DPP kernel matrix Lij can be written as:

Lij = hic
T
i cjhj . (2)

The DPP for a selecting a subset C ′ is given by:

PL(C
′) ∝ det(LC′), (3)

In our case C = C ′, as we consider repulsion between
all image tokens. det(LC) can be decomposed as follows:

det(LC) =

(∏
i∈C

h2
i

)
det(SC), (4)

where SC is the similarity matrix between all attention
maps ci.

The determinant of the kernel matrix LC corresponds to
the squared volume of the parallelepiped spanned by the
vectors hici for each i in C. By maximizing the product∏

i∈C h2
i , we encourage each embedding token to have high

entropy, corresponding to a large magnitude in the feature
space. By maximizing the determinant det(SC), where SC

captures the pairwise similarities between attention maps,
we ensure that the directions ci are as different as possible,
promoting diversity among the tokens. This approach nat-
urally prevents the embeddings from collapsing into a sin-
gle representation by encouraging both high quality (non-
collapsed attention) and diverse (distinct attention patterns)
embeddings.

In practice, we define the DPP loss by taking the negative
log-determinant of the kernel matrix L

LDPP = − log det(LC + ϵI), (5)

where ϵI is a small diagonal matrix added for numerical
stability.

brat loss To obtain the overall image-report similarity, we
aggregate the multi-view embedding sentence similarities
by mean-averaging:

SR,I = SI,R =
1

|PM |
∑

(i,j)∈PM

Sv,f [i, j] (6)

As such, we get our contrastive losses as follows:

L(I|R) = − log

(
exp(SI,R/τ)∑
k exp(SI,Rk

/τ)

)
(7)

L(R|I) = − log

(
exp(SR,I/τ)∑
m exp(SR,Im/τ)

)
(8)

We also use the same “Image-grounded Text Genera-
tion” (ITG) loss as in BLIP-2 [27], as we found it to help
performance. Our final loss is thus given as:

L =
L(I|R) + L(R|I)

2
+ LDPP + LITG (9)



3.3. Downstream Models
Our brat framework provides both a pre-trained vision back-
bone M and a model EI(Q, I) for extracting multi-view
embeddings. We refer to brat-viz for the vision backbone
only, and brat for multi-view framework.

Figure 5 illustrates how the brat weights can be modular-
ized for different downstream tasks. Different task-specific
heads, such as an MLP for classification, a language model
for report generation, or a segmentation decoder, can ap-
pended to either brat or brat-viz. Experiments on different
such configurations are provided in the next section.

MRI Feat.
Extractor

brat brat-viz

CLS Head LLM 
Decoder

Segmentation 
Decoder

Cross-attention MRI Image EncoderMRI Feat.
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Figure 5. We connect two configurations of brat with various de-
coders to evaluate the benefits of our pre-training on downstream
tasks.

4. Experiments and Results
This paper presents a new vision-language pre-training
method for 3D medical scans and document-length reports.
In this section, we demonstrate the benefits of our ap-
proach over other pre-training methods, both in terms of
pre-training metrics, as well as on downstream tasks includ-
ing tumor and metastases segmentation, Alzheimer’s classi-
fication, and brain MRI report generation.

4.1. VLP Performance: Image-Text Retrieval
We evaluate brat on image-text retrieval tasks on both Anon-
Brain and BIMCV-R, an external public benchmark of
lung CTs and corresponding reports. We computed key
retrieval metrics such as recall@k and mean and median
rank. For AnonBrain we are also providing finding-based
metrics, where “P@5 (F)” corresponds to how frequently
each of the 5 retrieved samples contain at least one common
positive finding (F) with the ground-truth match. “R@5
(F)”corresponds to the frequency of finding at least one
sample containing exactly the same labels as the ground-
truth in the top-5 samples (recall).

AnonBrain We evaluated brat against multiple baselines:
CLIP, Q-Former (the base of brat), brat with the traditional
Colbert matching algorithm [22] instead of PVA, brat with-
out QD, brat with simple pairwise repulsion as used in [52]
instead of DPPs, and a Q-Former with QD. Results with

ViT and ResNet-50 backbone models are provided for com-
pleteness. For simplicity, we only included MRIs that have
at least one positive finding (around 90% of our original
dataset) in evaluation, as negative reports usually apply to
all negative images. As shown in Table 2, except mean
rank, brat sets the benchmark on all metrics. The lower
mean rank can generally be explained by the model making
higher confidence predictions, and this can be adjusted by
selecting the weights at earlier training steps. The QD com-
ponent improved performance, suggesting reliance of PVA
on QD for effective learning. Q-Former did not show ben-
efits with QD repulsion, potentially because the diversity is
of less use when the query tokens are not encouraged to be
aligned with diverse clinical features. Simple pairwise re-
pulsion also does not match the performance improvements
obtained by using DPPs. We also find that the document-
typical Colbert algorithm for matching multi-view emed-
dings does not perform as well as PVA. Qualitative exam-
ples of images and corresponding reports retrieved by brat
are shown in Figure 6.

BIMCV-R To demonstrate the generalizability of our
framework, we also pre-trained it from scratch on the
BIMCV-R dataset, a publicly available dataset of lung CT
scans paired with radiology reports. Similar to the original
paper, we find that conventional contrastive loss approaches
such as a basic Q-Former or CLIP perform very poorly
(see Table 3). Notably, without the need for self-supervised
techniques employed by MedFinder, brat achieves compa-
rable performance purely by leveraging textual supervision.
We also identify certain quality issues within the BIMCV-
R dataset, detailed in Appendix 6.3, which may contribute
to the generally lower performance observed on this bench-
mark. Despite these limitations, our results show that brat
can be effectively applied off-the-shelf to other medical
imaging modalities with complex visuals and lengthy re-
ports. We note a greater discrepancy in mean rank on
BIMCV-R, but limited methodological details in prior work
and unavailable model weights make direct comparison dif-
ficult, leaving some aspects open to further examination.

4.2. Downstream Tasks
In this section, we showcase how our pre-training is benefi-
cial for a wide range of downstream tasks.

Brain MRI Report Generation. VLP naturally suits ra-
diology report generation, as the visual embeddings al-
ready align with text features. To evaluate our pre-trained
backbones, we freeze the vision backbone and assess how
well a language model can extract image-grounded infor-
mation from it. We use Llama-3.2-1B [12], providing ei-
ther multi-view embeddings or image feature maps to the
LLM via a bridging MLP. Training and evaluation occur
on the AnonBrain dataset, and we provide both LLM-



Methods Text to Image Image to Text

R@1 ↑ R@5 ↑ R@10 ↑ R@5 (F) ↑ P@5 (F) ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ R@5 (F) ↑ P@5 (F) ↑ MdR ↓ MnR ↓
CLIP 0.146 0.407 0.564 0.894 0.718 8.0 35.8 0.159 0.431 0.569 0.853 0.748 8.0 37.2
QFormer 0.154 0.377 0.529 0.867 0.672 10.0 32.5 0.146 0.368 0.532 0.837 0.703 9.0 34.9
Colbert 0.125 0.370 0.509 0.889 0.680 10.0 31.9 0.113 0.326 0.487 0.810 0.732 11.0 36.0
brat w/o QD 0.173 0.458 0.615 0.894 0.711 6.0 37.3 0.171 0.449 0.606 0.875 0.745 7.0 34.5
brat w/ PR 0.099 0.349 0.497 0.875 0.723 11.0 36.6 0.109 0.328 0.478 0.818 0.696 11.0 39.2
QFormer w/ QD 0.155 0.370 0.542 0.851 0.701 10.0 34.8 0.152 0.381 0.529 0.817 0.699 10.0 33.6
brat 0.205 0.493 0.666 0.911 0.718 6.0 124.1 0.201 0.481 0.645 0.882 0.752 6.0 96.3
brat vit 0.015 0.066 0.117 0.661 0.410 385.0 404.6 0.016 0.066 0.129 0.604 0.473 357.0 401.0
brat resnet 0.095 0.292 0.436 0.843 0.654 13.0 109.4 0.131 0.343 0.462 0.809 0.640 12.0 62.0

Table 2. Evaluation results for text-to-image and image-to-text retrieval on AnonBrain. For the “↑” metrics higher is better and for the “↓”
metrics lower is better. “R@5 (finding)” and “P@5 (finding)” indicate the recall and precision at 5 for the finding task.

Methods Text to Image Image to Text

R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CLIP4clip [21] 0.003 0.015 0.022 717.0 735.9 0.003 0.008 0.015 722.0 738.7
3D-MIR [1] 0.011 0.047 0.103 121.1 152.3 0.012 0.040 0.088 134.9 162.4
MedFinder (Resnet-50) 0.028 0.087 0.203 68.9 81.3 0.029 0.088 0.197 71.2 80.7
MedFinder (ViT-base) 0.027 0.089 0.214 75.4 80.1 0.027 0.090 0.203 72.3 81.9
Q-Former 0.007 0.025 0.048 223.0 371.7 0.000 0.015 0.034 225.0 365.8
brat 0.030 0.109 0.165 71.0 283.0 0.036 0.103 0.182 67.0 282.0

Table 3. Evaluation results for text-to-image and image-to-text retrieval on BIMCV-R, a lung CT dataset. The compared results, except
Q-Former, are taken from Chen et al. [9]. It’s unclear how the median ranks happened to be reported as non discrete values.

based metrics (GREEN metric [35]) and natural language
metrics. We compare brat to training from scratch, Q-
Former pre-training, and classification-based pre-training
(“CLS”), using either the vision backbone or multi-view
embeddings as LLM input. Results are in Table 4. We
can see that the vision-language pre-training leads to sig-
nificant improvements over no pre-training or classification
pre-training. brat also leads to additional improvements over
simple QFormer pre-training. This is the first work to pro-
vide report generation capabilities for brain MRIs that were
trained on a large-scale dataset. We show that, overall, the
ability of VLMs to generate reports for brain MRIs is in line
with other radiographic modalities, such as chest X-rays.
Example reports are shown in the Appendix.

Alzheimer Classification To investigate whether our
pre-training generalizes to non-cancer-focused brain MRI
datasets, we evaluated brat on ADNI [36], a brain MRI
dataset investigating the progression of Alzheimer’s dis-
ease. We split the cohort into training (n=1,932), valida-
tion (n=384), and hold-out test (n=291) sets. Brain MRIs
are either “cognitive normal”, “mild cognitive impairment”
(MCI), or “Alzheimer’s disease”. In Figure 7, we show per-
formance on binary classification (Normal or Alz.) for 1,
10, and 100% training data. As results on ADNI vary sig-
nificantly based on random seeds and selected subsets of
the training data, we launch 10 runs for each setting and
bootstrap from these results to obtain 95% confidence in-

tervals. Table 7 in the Appendix contains more extensive
results. We show that our pre-training leads to consistent
and significant improvements across all settings. Vision-
language pre-training, in general, leads to significant perfor-
mance improvements over classification pre-training. These
results underline that the brat pre-training framework is a
great starting point for brain MRI problems across a wide
range of domains.

Segmentation Tasks We also evaluate brat on one of the
most common downstream applications in brain MRI anal-
ysis: tumor segmentation. We use BraTS2021 [2], contain-
ing gliomas, and BraTS2023-METS [30], containing brain
metastases. To isolate the benefit of the brat pre-training
framework, we only used T1 modalities and did not in-
clude many of post-processing steps typically included for
these datasets, such as patch-based processing. We follow
the conventional approach for this dataset in doing 4-fold
cross-validation [17], however, we also use three random
seeds for each run so we can again obtain confidence inter-
vals. We use the benchmark appropriate evaluation metrics
Dice (Brats2021) and lesion-wise Dice (Brats2023), given
for three overlapping regions: whole tumor, tumor core,
and enhancing tumor. Figure 8 shows that our pre-training
improves performance for the metastases, but not for the
gliomas. This may be explained by the fact the gliomas are
generally large and visible to even non-expert, meaning that
the core task is more separating pixels precisely rather than



Backbone Pre-training LLM GREEN (LLM Eval) NLG Metrics

All FP FN Location Severity METEOR CIDEr Rouge-L Bleu-1 Bleu-2 Bleu-3 Bleu-4

Densenet-121 None Llama 3.2-1B 0.300 0.110 0.190 0.750 0.850 0.117 0.039 0.180 0.177 0.103 0.065 0.042
Densenet-121 Classification Llama 3.2-1B 0.310 0.115 0.195 0.760 0.860 0.102 0.049 0.187 0.124 0.072 0.048 0.033
Densenet-121 QFormer Llama 3.2-1B 0.375 0.138 0.287 0.840 0.911 0.131 0.079 0.216 0.201 0.123 0.081 0.056
Densenet-121 brat Llama 3.2-1B 0.390 0.150 0.300 0.860 0.920 0.134 0.098 0.214 0.241 0.142 0.091 0.061
QFormer QFormer Llama 3.2-1B 0.360 0.130 0.280 0.820 0.900 0.125 0.105 0.210 0.190 0.115 0.078 0.053
QFormer brat Llama 3.2-1B 0.402 0.172 0.318 0.852 0.917 0.128 0.114 0.219 0.197 0.121 0.081 0.056

Table 4. The backbone is always frozen, except for “None” pre-training. The GREEN metric is obtained using a 7B parameter LLM.
Four GREEN scores, relating to false findings (FP), missing findings (FN), false findings (FP), and accuracy of severity and location
specification of findings are provided. Two additional metrics used in GREEN, missing or hallucinated references to prior scans are
omitted as we removed these references from our dataset and therefore our models all score a 100% on these metrics.

top-1 top-2 top-3 top-4

there are multiple subcentimeter enhancing lesions within 
the bilateral cerebellar hemispheres, with dimensions 
ranging from 0. 2 - 0. 3 cm, which are suspicious for 
metastatic deposits ( series 11 image 9, series 10 image 8 - 
10 ). adjacent to the right parietal bone, there is minor 
ventral epidural enhancement. a punctate focus of 
enhancement in the left parietal lobe, with associated 
linear enhancement, is suggestive of an infarct ( series 9 
image 12 ). the ventricles are stable in appearance. there is 
no evidence of acute intracranial hemorrhage or 
hydrocephalus. patchy foci of t1 signal intensity within the 
cerebral white matter are noted, likely representing 
chronic microvascular ischemic changes. there is no 
appreciable mass effect or midline shift. no extra - axial 
fluid collections are identified.

patchy white matter changes are 
likely related to chronic 
microvascular ischemia. no 
evidence of acute infarction, 
hydrocephalus, or enhancing 
parenchymal mass lesions. there are 
no extra - axial collections on the t1 
- weighted post - contrast images.

sella : the sellar region does not show any 
suprasellar mass or pituitary macroadenoma. 
the infundibulum appears normal in 
thickness. there is subtle hypoenhancement 
along the inferior left aspect of the pituitary, 
which may be artifactual or potentially 
indicative of a microadenoma. no acute 
hemorrhage, hydrocephalus, acute infarction, 
extra - axial fluid collection, or suspicious 
intracranial enhancement is evident. several 
nonspecific subcentimeter hyperintensities are 
observed in the cerebral white matter on the 
t1 - weighted post - contrast images.

subcentimeter focus of cavitary 
alteration within the posterior limb of 
the left internal capsule likely represents 
a chronic lacunar infarct. tiny focus of 
subcortical signal alteration within the 
anterior left frontal lobe is nonspecific 
but may be related to chronic 
microvascular ischemia. no evidence of 
hydrocephalus or enhancing 
parenchymal mass lesions.

right parietal postoperative 
changes with ex vacuo 
enlargement of the adjacent 
ventricular system are noted. 
linear enhancement is present at 
the operative bed. there are no 
mass lesions, hydrocephalus, or 
acute infarction.

postoperative changes are noted 
within the posteroinferior parietal 
lobe extending caudally into the 
supralateral occipital lobe. 
surrounding t2 prolongation is 
observed. enhancement within the 
surgical cavity is present. there is 
no evidence of enhancing mass 
lesions or hydrocephalus on the t1 - 
weighted post - contrast images.

right temporal occipital junction craniotomy 
with an associated resection cavity is noted. 
there is residual enhancement along the 
posterior aspect of the resection cavity, likely 
representing postoperative changes. 
surrounding t2 flair signal hyperintensity is 
present. there are no areas of abnormal 
enhancement or discontiguous t2 flair signal 
abnormality. no evidence of hydrocephalus, 
acute infarction, or acute hemorrhage is seen. 
diffusion - weighted imaging shows no 
evidence of acute infarct.

postoperative changes are evident status post 
right frontoparietal craniotomy. there is a small ill 
- defined area of heterogeneous enhancement in 
the right frontoparietal region along the 
contracted resection cavity. surrounding t2 signal 
hyperintensity is noted. additional areas of patchy 
and confluent t2 signal hyperintensity are present 
in the subcortical and periventricular white 
matter, right greater than left. no suspiciously 
enhancing lesions are identified in the brain. 
there is no evidence of acute infarction or acute 
intracranial hemorrhage. the ventricles are 
slightly prominent. a left parietotemporal 
developmental venous anomaly is present.

on t1 - weighted post - contrast mri of the 
brain, there are no abnormally enhancing 
lesions within the brain parenchyma, 
leptomeninges, or dura. mild diffuse 
parenchymal volume loss is noted along 
with mild periventricular and scattered 
subcortical and deep white matter changes, 
which are consistent with the patient's age. 
there is no evidence of hydrocephalus. the 
orbital soft tissues and cavernous sinus 
appear unremarkable without any focal 
lesions.

the available imaging consists of a t1 - 
weighted post - contrast mri of the brain. the 
ventricles are slightly prominent. there are no 
enhancing brain lesions or significant mass 
effect. extensive scattered patchy 
hyperintense signal white matter lesions are 
noted in the periventricular and subcortical 
white matter, which may correspond to areas 
of ill - defined subtle low density on the prior 
ct scan. there is no evidence of acute 
intracranial hemorrhage, infarct, or extra - 
axial collection. there is no midline shift or 
downward herniation.

on the t1 - weighted post - contrast 
mri of the brain, there are no 
abnormally enhancing lesions 
within the brain parenchyma, 
leptomeninges, or dura. there is 
mild diffuse parenchymal volume 
loss. no evidence of hydrocephalus 
is observed. the orbital soft tissues 
and cavernous sinus appear normal.

on t1 - weighted post - contrast mri of 
the brain, there is no evidence of an 
intracranial mass, acute infarct, or 
hemorrhage. there is no extra - axial 
fluid collection. the ventricles and 
sulci appear normal. there is no 
herniation. scattered nonspecific 
hyperintensities may be appreciated, 
which could suggest mild chronic 
microvascular ischemic changes.

Figure 6. Qualitative examples showing the top-4 output of our brat model for image-to-text retrieval on a reduced dev set of 315 examples.
On this subset the median rank achieved was 2. Enboxed examples are correct. Green (and underlined) sections are passages that are
clinically correct, even though they are from a different MRI. In red are passages that don’t correspond to the MRI.

Figure 7. Comparison of brat pre-training to alternative pre-
training methods for Alzheimer classification on ADNI.

requiring anatomical understanding of brain MRIs. More
detailed results are provided in Appendix Table 8 and 9.

5. Conclusion
We have introduced two ideas novel to vision-language
representation learning: multi-view embeddings adopted

Figure 8. Comparison of brat pre-training to random initialisa-
tion for tumor and metastases segmentation on BraTS2021 and
BraTS2023. Scores are averaged across the three tumor regions.

from document retrieval and DPPs to maximize the quality-
diversity of these embeddings. Our approach demonstrates
promising results when applied to images paired with long
reports, including both brain MRI and lung CT datasets.
The proposed brat framework is architecture-agnostic and
compatible with a variety of image and text encoders. The
flexibility of the learnable multi-view embeddings also nat-
urally allows to extend the input beyond imaging data. This



is promising for medical image analysis, where patient con-
text and lab results can provide crucial cues for diagno-
sis.
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Supplementary Material

6. Implementation and Training Details
In this section, we discuss the implementation details of our
pre-training and downstream evaluation. All code and mod-
els will be made public.

6.1. Pre-Training
Training parameters were determined empirically, with the
final set provided in Table 6. Contrary to the general as-
sumption that big batches lead to improved performance
for image-text contrastive learning, our results consistently
improved for comparitvely small batch sizes, in the range
of 25-32. This allowed us to train each model on a sin-
gle A/H100 GPU. Our experiments also found that the
Q-Former’s language modeling loss consistently improved
performance across nearly all configurations, while image-
text matching did not yield benefits, leading us to omit
the image-text matching loss. We also found that using
a biomedically pre-trained BERT outperformed the stan-
dard BERT pre-training version in all evaluated scenar-
ios. All model weights were selected based on the best
average metrics on the development set. For AnonBrain,
all models were trained with the same image processing:
1mm × 1mm × 1mm voxel spacing, intensity normaliza-
tion, and resizing to 32×256×256. Preliminary analysis on
AnonBrainalso showed lowered performance with standard
data augmentation such as Gaussian noise, image rotation
and translation, as well as random view cropping, and was
removed from subsequent analyses.

6.2. Downstream Tasks
We evaluated our pre-training methods by fine-tuning on
several downstream tasks. When feasible, our hyperparam-
eters were selected via grid search. The ADNI hyperpa-
rameter are given in Table 5. For ADNI, image prepro-
cessing was performed using Clinica’s t1-volume-tissue-
segmentation pipeline. For report generation, we follow the
parameters chooses in the Llama paper [12]. We used a
batch size of 1024 and learning rate of 0.0002. We use an
AdamW optimizer with a cosine decay and a warm-up ra-
tio of 0.3. For segmentation, we used nnUNet as the base-
line model, fine-tuning it with an initial learning rate of
1e-2 and a weight decay of 3e-5. The training pipeline in-
cluded standard nnUNet pre-processing, data augmentation
was not used. Result model weights were selected based on
the highest mean Dice score for BraTS-2021 and the best
Lesion-Wise metrics for BraTS-2023-METS on the valida-
tion set. All model weights were selected based on the best
average metrics on the development set.

Parameter 1% 10% 100%

Batch Size 16 32 32
Learning Rate 1.00E-06 1.00E-05* 1.00E-05*
Training Precision Bfloat16
Augmentation Yes No No
Trained Layers MLP Only All All
MLP size 2 layers

Table 5. Implementation details of our Alzheimer classification
downstream task. *For ViT we used 1.00E-06 across all data
amounts. Augmentation consisted of: random flipping, random
intensity scaling, random intensity shifting, adding gaussian noise,
gaussian smoothing, random contrast adjustment, and random low
resolution simulation. More details can be found in our code.

Parameter all models on AnonBrain brat on BIMCV-R

Batch Size 32 25
3D Vision Model M Densenet-121/ViT/ResNet-50 Densenet-121
Weights Init. of M None
Architecture of EI/R BERT-base1

Weights Init. of EI/R BiomedBERT2

Learning Rate M 5.00E-04*
Learning Rate EI/R 5.00E-05
Max. Text Length ER 256
NQ (# of Query Tokens) 32
Cross-Attention Frequency 2
Max. Number of Sentences 20
Training Precision Bfloat16
Augmentation None

Table 6. Implementation details of our pre-training. Except for
BIMCV-R , the batch size was chosen to be maximal given com-
pute resources. *For ViT, we used a lower learning rate of 1.00E-
07.

6.3. BIMCV-R Dataset
We found quality issues with the BIMCV-R dataset that
may explain the overall lower performance obtained on this
dataset compared to AnonBrain. Figure 9 shows how for
some images the middle slice (depicted) is already no longer
in the lung, suggesting that the scan mainly depicts other
body parts. Several images also seem to depict localizer
scans, which makes it difficult to connect them to radiol-
ogy reports. Appropriate processing of these images would
likely lead to significant performance improvements.

[h]

7. Additional Results

In this section, we provide more detailed results and exam-
ples.



Figure 9. BIMCV-R example images of localizer scans or where the middle slice is already in the abdomen or pelvis.

7.1. Alzheimer’s Classification
More detailed results for Alzheimer’s classification are pro-
vided in Table 7.

7.2. Report Generation
Figure 10 shows examples of generated reports.

7.3. Segmentation

8. Dataset Details
In this section, we discuss AnonBrain, the largest ever
dataset of brain MRIs used to train an AI model.

8.1. Raw Dataset
We collected a comprehensive dataset of brain MRI scans
and their corresponding clinical reports from a cancer cen-
ter, covering the period from 2012 to 2017. MRI ses-
sions typically consists of multiple MRI modality scans
(e.g. FLAIR), however, in this first iteration we focus on
T1-post contrast MRIs, the most informative one. In or-
der to extract T1 post-contrast scans, we generated a long,
clinician-validated list of keywords that are typically used to
refer to these scans. The list contained over 50 expressions
such as “Axial T1 post SENSE” or “Ax T1 POST”. Around
3,000 sessions that didn’t include T1 post contrast imag-
ing were removed. The DICOMS were converted to NIFTI
and we standardized the intensity values by thresholding
the images at the 99th percentile and rescaling them to a
range of 0-800, converting the final values to 16-bit integers.
All MRI sessions were connected to a patient data storage,
which enabled us to obtain patient’s demographic informa-
tion, treatments and diagnoses. We provide an overview of
key patient data in Figure 11.

8.2. GPT-4 Processing
We processed the thousands of medical reports in parallel
using GPT-4 with Python’s asyncio framework. Each re-
port underwent two GPT-4 calls: one for rewriting and an-
other for answering specific questions. A ThreadPoolEx-
ecutor handled asynchronous API calls, with a logit bias

reducing certain temporal medical terms (e.g., “increase,”
“new”). The temperature was set to 0.0 and top p to 1.0 for
deterministic outputs. Reports were sorted by length before
processing, and asyncio.gather() improved throughput over
sequential execution. Processing 80,000 reports took 48
hours. Comparisons with GPT-3.5 showed GPT-4’s clear
advantages, though this was before GPT-4o’s release.

Figure 12 shows an example raw report including the ref-
erences to prior scans and image modalities other than T1
post contrast. Figure 13 shows the prompt that was used to
make GPT-4 remove these references and any PHI data. To
annotate findings from the report, we used the prompt show-
ing in Figure 14. An example of this execution is shown in
Figure 15.



Pre-training Approaches 1% Training Data (n=19) 10% Training Data (n=193) 100% Training Data (n=1,932)

Vision Model M Weight Init. Alz. Normal MCI µ Alz. Normal MCI µ Alz. Normal MCI µ

Densenet-121 Random 0.523 0.513 0.527 0.521 [0.495, 0.547] 0.640 0.560 0.498 0.567 [0.535, 0.596] 0.724 0.629 0.535 0.629 [0.608, 0.649]
CLS 0.514 0.517 0.511 0.514 [0.487, 0.538] 0.614 0.598 0.523 0.578 [0.555, 0.602] 0.720 0.628 0.556 0.635 [0.612, 0.650]
Q-Former 0.565 0.525 0.486 0.526 [0.506, 0.547] 0.688 0.627 0.550 0.623 [0.604, 0.640] 0.747 0.662 0.581 0.663 [0.651, 0.681]
brat 0.560 0.559 0.505 0.543 [0.497, 0.579] 0.720 0.644 0.518 0.628 [0.606, 0.653] 0.793 0.687 0.505 0.661 [0.650, 0.672]

ResNet-50 Random 0.497 0.566 0.541 0.535 [0.497, 0.569] 0.516 0.529 0.541 0.530 [0.498, 0.561] 0.590 0.525 0.528 0.548 [0.514, 0.586]
brat 0.527 0.531 0.532 0.530 [0.500, 0.556] 0.621 0.456 0.452 0.510 [0.490, 0.532] 0.636 0.542 0.533 0.569 [0.519, 0.612]

ViT Random 0.517 0.485 0.473 0.492 [0.471, 0.512] 0.554 0.491 0.502 0.515 [0.495, 0.532] 0.528 0.473 0.515 0.505 [0.476, 0.533]
brat 0.518 0.498 0.460 0.491 [0.458, 0.523] 0.607 0.555 0.467 0.543 [0.522, 0.561] 0.622 0.521 0.450 0.531 [0.513, 0.551]

Table 7. Evaluation results (AUC scores) for different initialisations using 1%, 10%, and 100% of training data. “Alz.” stands for
Alzheimer’s disease and “MCI” for mild cognitive impairment. The column µ is the average of the per-class AUC scores computed
on the balanced test set; only this column displays the confidence interval.

An enhancing lesion approximately 0.5 cm in size is noted within the left caudate 
nucleus, exhibiting minimal precontrast T1 hyperintensity without surrounding 
edema. This finding is suggestive of a late subacute lacunar infarct or may be related 
to vascular enhancement. There is no evidence of hydrocephalus, acute infarction, or 
extra-axial collections.

The enhancing lesion within the left caudate head measures 0.6 cm. There are 
no enhancing parenchymal, dural, or leptomeningeal lesions. No evidence of 
hydrocephalus or acute infarction is present on the T1-weighted post-contrast 
images.

Ground-truth

Generated

Imaged with frameless stereotactic fiducial markers, the anterior cranial fossa floor meningioma 
measures 4 x 3.9 cm; it fills the olfactory grooves and extends along the planum sphenoidale and orbital 
roofs; there is mild hyperostosis; mass effect is observed upon the paramedian inferior frontal lobes with 
associated T1 hyperintense changes; no suspicious enhancing mass lesions are identified; ventricles are 
unremarkable; no diffusion restriction to indicate acute ischemia is present.

The MRI brain demonstrates an enhancing, ill-defined, heterogeneously enhancing, and heterogeneous lesion centered 
in the right olfactory groove with extension into the right medial aspect of the anterior cranial fossa. The lesion is 
closely applied to the right planum sphenoidale and cribriform plate. There is associated edema involving the anterior 
and inferior aspects of the right frontal lobe. The differential diagnosis includes a small meningioma as well as tumor 
such as esthesioneuroblastoma. No additional suspiciously enhancing lesions are identified in the brain parenchyma. 
There is no evidence of hydrocephalus, midline shift, or herniation.

Ground-truth

Generated

Figure 10. Two example MRI reports generated by our VLM with a brat backbone. The reports largely capture the correct image findings.

Pre-training Approaches 1% Training Data (n=12) 10% Training Data (n=120) 100% Training Data (n=1200)

Vision Model M Weight Init. Whole Tumor Tumor Core Enhanced Tumor Whole Tumor Tumor Core Enhanced Tumor Whole Tumor Tumor Core Enhanced Tumor

Densenet-121 Random 0.780 0.646 0.585 0.875 0.791 0.710 0.903 0.865 0.779

Densenet-121 brat 0.796 0.633 0.580 0.870 0.785 0.707 0.903 0.864 0.776

Table 8. Segmentation performance (Dice scores) for different pre-training initialisations using 1%, 10%, and 100% of the training data.
The values correspond to the Dice scores for the Whole Tumor, Tumor Core, and Enhanced Tumor regions.

Pre-training Approaches 1% Training Data (n=12) 10% Training Data (n=120) 100% Training Data (n=1200)

Vision Model M Weight Init. Whole Tumor Tumor Core Enhanced Tumor Whole Tumor Tumor Core Enhanced Tumor Whole Tumor Tumor Core Enhanced Tumor

Densenet-121 Random 0.780 0.646 0.585 0.875 0.791 0.710 0.922 0.854 0.761

brat brat 0.796 0.633 0.580 0.870 0.785 0.707 0.925 0.867 0.762

Table 9. Segmentation performance (Lesion-wise Dice scores) for different pre-training initialisations using 1%, 10%, and 100% of the
training data. The values correspond to the lesion-wise Dice scores for the Whole Tumor, Tumor Core, and Enhanced Tumor regions.



Figure 11. Participant demographics. Primary diagnoses refers to the primary cancer diagnosis for the patients for whomst the scan was
ordered. Chemotherapy and radiotherapy types show a count of all the types of chemo/radio sessions assigned to the patients in this dataset.
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also make sure that the intermediate re-written report captures all the relevant information from

the original report. TODO: provide other metrics once CPD is back up again. Annotating

all the reports cost approximately $1,600 which is significantly lower than the cost of expert

annotation.

Again status post left-sided craniotomy with stable postoperative changes and with
slight increase in the heterogeneously enhancing mass lesion centered in the left tem-
poral lobe which now measures 7.5 x 4.8 cm on image 13 series 14 from 6.7 x 4.7 cm ,
though the enhancement within it is more irregular and less intense than before .
The mass is not completely imaged on the perfusion sequence but there is
hyperperfusion inferiorly within the nodular enhancing component which
is incompletely demonstrated . The surrounding hyperintense T2/FLAIR infiltrating

nonenhancing signal abnormality is stable consistent with nonenhancing tumor/edema.
No new discontinuous suspiciously enhancing brain lesions. There is slightly
increased dilatation of the ventricles with slightly increased hyperintense T2/FLAIR

signal in the periventricular white matter particularly about the frontal horns and atrium,
suggesting transependymal flow of CSF from a communicating hydrocephalus. Stable
mild midline shift to the right without significant downward herniation. No acute
intracranial hemorrhage, infarct, or new extra-axial collections.

Figure 6.3: An example report showing references to prior scans in blue and descriptions of
findings not visible on T1 post-contrast scans in yellow .

You are a highly experienced radiologist. Re-write the given brain MRI report and only
modify the following:

(a) Leave out any details not visible on T1-weighted post-contrast images. Note
that T2/FLAIR hyperintensities can often be seen on T1 Images. Observations related to
e.g. perfusion, plasma volume or K trans cannot be seen and should be excluded.
(b) Leave out any terms that suggest temporal change or progression (e.g. dates, “new”,
“increased”, “previous”, “now”, “compared to”, “since last”, “more”, “less”, etc.)
(c) Remove any PHI.

Figure 6.4: The final prompt that was used to re-write the reports and remove PHI and infor-
mation not visible from the T1 post contrast images.
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Figure 12. An example report showing references to prior scans in blue and descriptions of findings not visible on T1 post-contrast scans
in yellow .
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also make sure that the intermediate re-written report captures all the relevant information from

the original report. TODO: provide other metrics once CPD is back up again. Annotating

all the reports cost approximately $1,600 which is significantly lower than the cost of expert

annotation.

Again status post left-sided craniotomy with stable postoperative changes and with
slight increase in the heterogeneously enhancing mass lesion centered in the left tem-
poral lobe which now measures 7.5 x 4.8 cm on image 13 series 14 from 6.7 x 4.7 cm ,
though the enhancement within it is more irregular and less intense than before .
The mass is not completely imaged on the perfusion sequence but there is
hyperperfusion inferiorly within the nodular enhancing component which
is incompletely demonstrated . The surrounding hyperintense T2/FLAIR infiltrating

nonenhancing signal abnormality is stable consistent with nonenhancing tumor/edema.
No new discontinuous suspiciously enhancing brain lesions. There is slightly
increased dilatation of the ventricles with slightly increased hyperintense T2/FLAIR

signal in the periventricular white matter particularly about the frontal horns and atrium,
suggesting transependymal flow of CSF from a communicating hydrocephalus. Stable
mild midline shift to the right without significant downward herniation. No acute
intracranial hemorrhage, infarct, or new extra-axial collections.

Figure 6.3: An example report showing references to prior scans in blue and descriptions of
findings not visible on T1 post-contrast scans in yellow .

You are a highly experienced radiologist. Re-write the given brain MRI report and only
modify the following:

(a) Leave out any details not visible on T1-weighted post-contrast images. Note
that T2/FLAIR hyperintensities can often be seen on T1 Images. Observations related to
e.g. perfusion, plasma volume or K trans cannot be seen and should be excluded.
(b) Leave out any terms that suggest temporal change or progression (e.g. dates, “new”,
“increased”, “previous”, “now”, “compared to”, “since last”, “more”, “less”, etc.)
(c) Remove any PHI.

Figure 6.4: The final prompt that was used to re-write the reports and remove PHI and infor-
mation not visible from the T1 post contrast images.
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Figure 13. The final prompt that was used to re-write the reports and remove PHI and information not visible from the T1 post contrast
images.
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You are a highly experienced radiologist. Accurately answer the questions below based
on the given brain MRI report. Your output must be in json format.

(a) For each question, choose the appropriate answer (wording must match ex-
actly). If answers are mutually exclusive, choose one. If multiple answers can apply, list
all that are true, separated by semicolons (";").
(b) If the MRI report does not contain information to answer a specific question, use the
default answer indicating a normal status.
(c) Note the following assumptions: meningiomas are considered enhancing lesions;
burr holes and ventriculostomy and Ommaya catheters are considered prior surgery;
punctate lesions are less than 1cm.

Questions (Answer options):
Is there evidence of prior surgery? (Yes / No)
What kind of surgery was performed? (NA / left frontal craniotomy; right frontal
craniotomy; left parietal craniotomy; right parietal craniotomy; left temporal or pterional
craniotomy; right temporal or pterional craniotomy ; left occipital craniotomy; right
occipital craniotomy)
Are there any enhancing lesions? (Yes / No)
What is the length of the biggest mass lesion? (NA / Less than 1cm / 1 to 2cm / More
than 2cm)
Which side of the brain has more enhancing lesions? (NA / Left / Right)
List all the locations that contain enhancing lesions. (NA / Left frontal lobe; Right
frontal lobe; Left parietal lobe; Right parietal lobe; Left temporal lobe; Right temporal
lobe; Left occipital lobe; Right occipital lobe; Left thalamus or basal ganglia; Right
thalamus or basal ganglia; Cerebellum; brainstem; cervical spinal cord)
How many enhancing lesions are there? (NA / One / Between 2 and 6 / Between 7 and
15 / More than 15)
Is there a herniation or midline shift? (Yes / No)
Are there any signs of white matter disease (e.g., leukoaraiosis or leukoencephalopathy)?
(Yes / No)
Is the pituitary gland normal in appearance? (Yes / No)
Are there abnormalities in the sella or parasellar regions? (Yes / No)
Where is there evidence of invasion into or compression of adjacent structures?
(Nowhere / ventricles; brainstem; cranial nerves)

Brain MRI report: ${Insert processed report}$

Figure 6.5: The final prompt that was used to extract structured information from the reports.
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Figure 14. The final prompt that was used to extract structured information from the reports.
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Original Report

FINDINGS: BRAIN: The peripherally enhancing centrally cystic/necrotic metastasis within inferior right frontal lobe bulging into frontal horn of the right lateral ventricle has
not significantly changed in size when allowing for differences in image acquisition. Extensive right anterior hemispheric vasogenic edema which extends into the basal ganglia
and anterior thalamus appears mildly improved. Mass effect resulting in right-to-left midline shift has mildly improved as well. The Ommaya catheter remains in place with its
tip within necrotic core of the right inferior frontal lobe mass. The nodular dural based thickening along the anteroinferior margin of the right frontal burr hole has increased
now measuring 1.8 x 1.3 cm on the axial images, having previously measured 1.1 x 0.8 cm. On the coronal images, it measures 1.5 x 0.8 cm and likely represent focal dural
based tumor. The previously seen superficial focus of enhancement along the right inferior frontal gyrus appears less conspicuous. Small enhancing lesion adjacent to upper
aspect of the Ommaya catheter has increased in size now measuring 4 to 5 mm. Right high parafalcine parietal hemorrhagic lesion has not significantly changed. Background
white matter changes are stable.
IMPRESSION: Compared to December 21, 2011; 1. Mild progression of dural based disease along the anteroinferior margin of the right frontal burr hole. 2. Mild progression
of the metastasis adjacent to upper aspect of the right Ommaya catheter. 3. Stable hemorrhagic lesion within high right parafalcine parietal lobe. 4. The heterogeneous right
inferior frontal lobe mass its stable in size however, right hemispheric edema and mass effect have mildly improved.

→
Rewritten Report

The peripherally enhancing centrally cystic/necotic metastasis is located within the inferior right frontal lobe, bulging into the frontal horn of the right lateral ventricle. There
is extensive right anterior hemispheric vasogenic edema extending into the basal ganglia and anterior thalamus. Mass effect results in right-to-left midline shift. The Ommaya
catheter is in place with its tip within the necrotic core of the right inferior frontal lobe mass. There is nodular dural based thickening along the anteroinferior margin of the
right frontal burr hole, measuring 1.8 x 1.3 cm on the axial images. On the coronal images, it measures 1.5 x 0.8 cm and likely represents a focal dural based tumor. There is a
superficial focus of enhancement along the right inferior frontal gyrus. A small enhancing lesion is adjacent to the upper aspect of the Ommaya catheter, measuring 4 to 5 mm.
There is a right high parafalcine parietal hemorrhagic lesion. Background white matter changes are present.

→
Structured Report

• Is there evidence of prior surgery? Yes
• What kind of surgery was performed? Right frontal craniotomy
• Are there any enhancing lesions? Yes
• Are there any non-enhancing lesions? Yes
• What is the length of the biggest lesion? 1 to 2 cm
• Which side of the brain has more enhancing lesions? Right
• List all the locations that contain enhancing lesions. Right frontal lobe; Right thalamus or basal ganglia
• How many enhancing lesions are there? Between 2 and 6
• Is there a herniation or midline shift? Yes
• Is there hydrocephalus? No
• What kind of hydrocephalus is there? NA
• Are there white matter changes suggestive of other pathologies? Yes
• Are there abnormalities in the cortical or subcortical grey matter suggestive of other pathologies? No
• Is the pituitary gland normal in appearance? Yes
• Are there abnormalities in the sella or parasellar regions? No
• Where is there evidence of invasion into or compression of adjacent structures? Ventricles

Figure 6.8: In Example #2, again our processing does a good job at re-writing the report, even
though it’s a much longer report with more findings. TODO: figure out if structured information
is correct.
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Figure 15. An example report and how it was processed with out pipeline.
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