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Abstract. We investigate active learning towards applied hyperspectral
image analysis for semantic segmentation. Active learning stems from ini-
tially training on a limited data budget and then gradually querying for
additional sets of labeled examples to enrich the overall data distribution
and help neural networks increase their task performance. This approach
works in favor of the remote sensing tasks, including hyperspectral im-
agery analysis, where labeling can be intensive and time-consuming as
the sensor angle, configured parameters, and atmospheric conditions fluc-
tuate.

In this paper, we tackle active learning for semantic segmentation using
the AeroRIT dataset on three fronts - data utilization, neural network
design, and formulation of the cost function (also known as acquisition
factor, uncertainty estimator). Specifically, we extend the batch ensem-
bles method to semantic segmentation for creating efficient network en-
sembles to estimate the network’s uncertainty as the acquisition factor
for querying new sets of images. Our approach reduces the data label-
ing requirement and achieves competitive performance on the AeroRIT
dataset by using only 30% of the entire training data.
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1 Introduction

There has been significant development in designing deep neural networks for
semantic segmentation across multiple computer vision applications. Most of
those networks benefit from large amounts of data [10, 1, 3, 9]. This additional
data load comes with an overhead cost of pixel-level annotations that increases
exponentially with the number of samples. For example, the AeroRIT semantic
segmentation dataset (1973 × 3975) required around 50 hours of manual labeling
and multiple review rounds to ensure a good quality release.
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Multiple branches of machine learning deal with reducing the need for a
large number of labeled examples (for example, semi-supervised learning, weakly-
supervised learning, and active learning). Active learning is an approach that
has gained significant traction to reduce dependency on large amounts of data
for semantic segmentation ([12, 14, 8]). This approach focuses on tracking the
most informative samples within the unlabeled data pool to add to the labeling
pool via a scoring mechanism, most commonly an estimation of the network’s
uncertainty. This accumulation continues for multiple active learning cycles until
one of the two conditions are met: 1) the network under question achieves a preset
performance budget (typically, 95% of the entire data performance), or 2) the
data labeling budget gets exhausted.

This paper explores the ability of neural networks to capture the information
within hyperspectral signatures and function in an active learning data-training
framework: we report competitive performance by utilizing significantly less la-
beled data, at par with fully utilizing the labeled data, which can be achieved
under proper training conditions. For our analysis, we use the baseline network
provided in the AeroRIT dataset [9] and make our increments to reduce the
labeled data requirement by 70%.

2 Related Work

Kendall formulated segmentation as an approximate Bayesian interpretation by
applying dropout at selective layers of their architecture to formulate test-time
ensembles [4]. Lakshminarayanan et al. showed that training multiple iterations
of the same network with random initializations acts as ensembles [5], and Wen
et al. proposed to use multiple rank-1 matrices along with a shared weight matrix
to form batch ensembles as an alternative to existing methods [13]. Rangnekar
et al. studied the effects of using these approaches for uncertainty quantification
on hyperspectral imagery by training on the AeroRIT dataset and found that
applying dropout during test time gives the most definitive results [7]. In our
paper, we build on this approach for uncertainty quantification as the active
learning acquisition factor in the learning pipeline.

3 Methodology

The objective of this paper is to get an understanding of how different com-
ponents of an experiment design can function towards improving the scope of
data requirements for hyperspectral semantic segmentation with limited data.
We adopt the active learning approach, which works in the following manner:
(1) Train on available labeled data, (2) Acquire additional labels by evaluating
the network on the unlabeled data pool, (3) Add the freshly labeled data to the
existing labeled data pool, and (4) Repeat (1) to (4) till convergence. Given this
process, we focus on three essential adjustments: data utilization, neural network
design, and acquisition factor.
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Fig. 1: The distribution of classes within the AeroRIT train set at 100% and our
selected starting set with only 21.50% of the data.

3.1 Data utilization

We use the AeroRIT dataset as the reference for our learning pipeline [9]. The
train set consists of 502 image patches of 64 × 64 resolution, post ignoring
the overlap and ortho-rectification artifact patches used in the original studies
presented in the paper. From this train set, we fixate on a small patch of the
area as our starting point, as shown in Fig. 3a. This patch consists of 108 image
patches, thus giving us a starting set of 21.5% of the dataset. We treat the rest
of the image patches within the train set as the unlabeled pool of available data
during the learning pipeline. Fig. 1 shows the statistics of each class within the
respective sets, and we observe that the water class is not present in the initial
labeled set. We hypothesize a well-trained network will have high uncertainty
towards regions consisting of water and hence, do not consider it a concern. This
would not be the case when dealing with standard gray-scale or color imagery,
but the discriminative nature of hyperspectral imagery allows us to make this
hypothesis.

We think it is unrealistic for any neural network to be able to achieve com-
parable performance to its fully labeled counterpart when using limited data.
To this extent, we use data augmentation to increase the number of possible ex-
amples within the scene by applying random horizontal and vertical flips, with
additive Gaussian noise in randomly selected spectral bands, random resizing,
and CutOut [2]. This enables us to increase exposure to underlying data distri-
bution and fully utilize the available data.

We increase the scope of learning further by increasing the learning sched-
ule to account for relatively fewer data samples seen per training epoch. The
network sees 502 samples per epoch on the fully labeled dataset to learn rep-
resentations from scratch. Conversely, in the limited data regime, the network
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Fig. 2: Example predictions as a progressive acquisition step in the active learning
pipeline. We observe a distinct improvement across all classes as the percentage
of data used grows through the active learning cycles.

only sees 108 samples per epoch; hence, we do not expect it to learn at total
capacity due to the nearly 1/5th reduction of samples per epoch. Hence, our
first significant adjustment is to increase the number of samples seen per epoch
during training in the limited data regime. We show in our experiments section
that this dramatically improves the network’s ability to learn representations
from the limited set of available data.

3.2 Neural network design

We use the network described in [9, 7] for fair comparison. The network is based
on the U-Net architecture and consists of two downsampling encoder blocks,
followed by a bottleneck block, and two upsampling blocks before making the
final prediction [10]. Our goal is to modify the network to express uncertainty,
and previous studies have shown that ensembles work well for this purpose [4,
7]. The Monte-Carlo Dropout based approach is a clear choice for our task,
where dropout is applied during test time for multiple network ensembles. How-
ever, dropout-based approaches have a shortcoming regarding reproducibility as
the application is a function of the random probability distribution. Hence, we
consider an alternative, simpler approach of Batch Ensembles.

Batch Ensembles (BE) work by sharing a tuple of trainable rank-1 matrices
for every convolutional filter that is present in the neural network (Fig. 3b). The
tuples act as the ensembles and, when combined with the filter weights, act as an
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(a) The entire training set (Green) versus
the starting set for active learning (Red).

(b) A graphic description of our U-Net
with Batch Ensembles blocks.

Fig. 3

individual ensemble members. The network in a standard manner - each mini-
batch is passed through the network, wherein it is split according to the number
of ensembles (for example, a network with four tuples would split a mini-batch of
32 samples into eight samples per tuple). The core idea is that the convolutional
filter weight acts as the shared weight amongst all randomly initialized rank-
1 tuples, which learn their own set of representations. During the evaluation
(inference) phase, every data point is replicated (for the above example, four
times) and passed through the network to get an ensemble prediction, which
is further averaged to obtain a final network prediction. In this approach, the
tuple weights being fixed post learning ensure consistent predictions every time,
unlike the dropout approach, while maintaining a low-cost solution to training
individual ensemble instances like the Deep Ensembles approach.

Kendall et al. found in their study that applying dropout only to the bot-
tleneck blocks of the encoder and decoder gave them optimum results [4]. With
this motivation, we experiment with key areas to apply Batch Ensembles tuples
to the convolutional filters within our network and experimentally found out the
best and most consistent results were obtained by converting the convolutional
filters in the encoder and bottleneck blocks to their ensemble counterparts. Our
second significant adjustment is to convert a deterministic neural network into
its light-weight ensemble version that can easily express uncertainty without
further adjustments.

3.3 Acquisition Factor

Our goal now is to interpret the model’s outputs as a function for querying a
fixed budget of patches for labeling from the unlabeled pool of image patches.
We simulate the process of querying for additional labels in reality by using
the ground truth annotations already present for our dataset. These queried
image patches are added to the labeled set for another cycle of learning. We
experiment with four different approaches as acquisition factors: random (lower-
bound), softmax confidence, softmax entropy, and softmax margin. We refer the
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Table 1: Quantitative improvements over the baseline performance using a small
U-Net on the AeroRIT dataset.

Training
Scheme

Data
Util.

Building Vegetation Roads Water Cars mIoU

Baseline
(1x data)

21.50% 61.92 93.39 74.06 0.00 31.39 51.70

5x data 21.50% 72.13 94.12 75.10 0.00 31.66 54.60
5x data (BE) 21.50% 77.00 94.50 76.99 0.00 28.85 55.47
5x data (BE) 29.50% 81.06 93.51 78.83 72.50 35.52 72.28
Oracle 100.0% 82.94 94.82 80.00 63.35 35.82 71.40

readers to [11] for an in-depth explanation of these factors and experimentally
find softmax entropy as the best candidate for our approach.

We observe that the networks quickly become confident in their predictions
during the training process. Typically, the network sees enough variance in the
data to understand the minor differences between classes that may have similar
signatures (for example, a black car and a black roof on a building). We observe
this in Fig. 2 as the network progressively makes an understanding of the simi-
larities and differences in the signatures with more labeled data. We account for
this spurious leap in the network’s prediction by penalizing the confident predic-
tions [6]. This results in an elegant win for us as a byproduct of the penalty is
higher entropy, which helps express uncertainty better. Our third significant ad-
justment is to combine confidence penalty regularization with softmax entropy
as our acquisition factor.

4 Experiments and Results

4.1 Hyperparameters

We use 50 bands in the AeroRIT dataset, ranging from 400 to 890 nm, in this
paper - 31 visible and 20 infrared bands. All chips are clipped to a maximum
of 214, and normalized between 0 and 1 before forward passing through the
networks. All networks are initialized with Kaiming initialization, and the rank-
1 matrices for batch ensembles are initialized to have a mean of 1 and a standard
deviation of 0.5 in accordance with the original paper. We use an initial learning
rate of 1e−2, with drops of 0.1 at 50 and 90 epochs. We train all our networks
for 120 epochs with standard cross-entropy loss and use confidence penalty for
all limited data training instances. We will release the code post-publication.

For the active learning scenario, we start with an initial labeled set of 108
images (21.5% of the data) and iteratively query for 10 images (2%) every active
learning cycle. We do not keep a preset data budget but instead strive to obtain
performance comparable with the network trained on full data (502 images).
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Fig. 4: Quantitative improvements of individual classes in the AeroRIT dataset
as a function of active learning (data querying) cycles.

4.2 Results

Tab. 1 shows that the training performance dramatically benefits from increas-
ing the learning schedule throughout the process. An increase in the number of
samples per epoch (5x data) results in an improvement from a mIoU of 51.70
to 54.60, most significantly affecting the Building category during the data aug-
mentation schemes. We also observe that shifting the model to its ensemble
version (BE) further increases the mIoU by another point, yet again, mainly
influencing the Building category that has two distinct white and black signa-
tures throughout our dataset. BE also drops the IoU for the Car category by
a few points, which is unexpected but is gradually over-comed through the ac-
tive learning cycles (Fig. 4). Fig. 4 also shows an interesting trend in the Water
category, we immediately observe a leap from 0 points in the IoU to roughly 45
points, before finally improving at the final cycle to 72.5 points and beating the
performance of the fully supervised network. This could indicate (and warrants
analyzing) wrongly labeled instances within the training set, which the network
has successfully chosen to ignore during its learning process.

We observe that using a confidence penalty helps stabilize the performance
and ensure reproducibility among various random initializations of the network.
We run the entire framework through a rigorous evaluation scheme by further
sampling 108 grid patches across random areas in the training set, ensuring that
all classes follow the data distribution in Fig. 1. Surprisingly, the networks could
reach similar performances in eight of the ten trials. We repeated the same set
of experiments and enhanced our analysis with test-time data augmentation via
random flips but did not obtain a reasonable difference in performance.
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5 Conclusion

We present an approach for learning with limited data in hyperspectral imagery
by leveraging the active learning framework. We can obtain performance at par
with a fully supervised network using only 30% of the data budget. In closing,
our next steps are to explore the domains of self-supervised learning to have a
better-initialized network, which can also incorporate pseudo information from
the unlabeled data to learn better representations.

References

1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 39(12), 2481–2495 (2017)

2. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

3. Kemker, R., Salvaggio, C., Kanan, C.: Algorithms for semantic segmentation of
multispectral remote sensing imagery using deep learning. ISPRS journal of pho-
togrammetry and remote sensing 145, 60–77 (2018)

4. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680 (2015)

5. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information pro-
cessing systems 30 (2017)

6. Pereyra, G., Tucker, G., Chorowski, J., Kaiser,  L., Hinton, G.: Regularizing
neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548 (2017)

7. Rangnekar, A., Ientilucci, E., Kanan, C., Hoffman, M.J.: Uncertainty estimation
for semantic segmentation of hyperspectral imagery. In: International Conference
on Dynamic Data Driven Application Systems. pp. 163–170. Springer (2020)

8. Rangnekar, A., Kanan, C., Hoffman, M.: Semantic segmentation with active semi-
supervised learning. arXiv preprint arXiv:2203.10730 (2022)

9. Rangnekar, A., Mokashi, N., Ientilucci, E.J., Kanan, C., Hoffman, M.J.: Aerorit:
A new scene for hyperspectral image analysis. IEEE Transactions on Geoscience
and Remote Sensing 58(11), 8116–8124 (2020)

10. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

11. Siddiqui, Y., Valentin, J., Nießner, M.: Viewal: Active learning with viewpoint
entropy for semantic segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9433–9443 (2020)

12. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
5972–5981 (2019)

13. Wen, Y., Tran, D., Ba, J.: Batchensemble: An alternative approach to efficient
ensemble and lifelong learning (2020)

14. Xie, S., Feng, Z., Chen, Y., Sun, S., Ma, C., Song, M.: Deal: Difficulty-aware active
learning for semantic segmentation. In: Proceedings of the Asian Conference on
Computer Vision (2020)


