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Abstract. Occlusion is a common issue for object detection and track-
ing applications using a remote sensor platform, especially in complex
urban environments where occlusions from buildings, bridges, and trees
are frequent events. While occlusions are unavoidable, the events can be
predicted to occur before the object of interest is obscured if there is
prior knowledge of the observed environment. To aid in object detection
and tracking tasks, we create an environment to map terrain and find
obscured regions in the scene which helps with re-detecting objects once
they are no longer obscured. We propose a dynamic data driven applica-
tions systems (DDDAS) framework for detecting occluded regions in an
imaged scene by integrating streams of real data with a physics-based
simulation model that updates based on the most recent images.
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1 Introduction

We utilize prior knowledge from open source resources to detect occlusions within
a given scene, allowing us initialize a simulation of the scene before we collect
real data samples and update the scene. We use OpenStreetMap (OSM) [9] for
scene initialization to obtain geo-rectified terrain of a given real world location
with dense OSM tags. These tags can be mapped into 3D modeling and ren-
dering software (for example, Blender). The 3D environment is then used to
synthetically image the scene with the Digital Imaging and Remote Sensing Im-
age Generation (DIRSIG) model [2, 3, 13], where common land cover materials
such as concrete, grass, and asphalt can be assigned to have hyperspectral re-
flectance spectra. DIRSIG is a versatile too. that it can produce simulations of
many image modalities such as RGB, multispectral, and hyperspectral through
the visible and infrared spectrum.

OSM provides a priori information about ground surface regions within the
scene that cannot be imaged directly from a remote imaging platform’s speci-
fied position. For example, an airborne camera viewing a road network from a
non-nadir viewing angle may not have direct line of sight on the road if nearby
buildings and vegetation are obscuring the road. If road material spectra (as-
phalt, concrete) are not detected in a region where OSM claims a road exists, we
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Fig. 1: Example of a DIRSIG scene using OSM terrain (left), and addition of
trees (right) to the scene to occlude the ground terrain. Green represents ground
vegetation and grey/white is paved roads.

infer the ground terrain in that region is occluded by an object that interrupts
the airborne cameras line of sight, as shown in Fig. 1.

Our initial estimate of a simulated region using OSM contains information
on a limited set of surface terrain materials such as asphalt and grass, which
can then be confirmed or rejected with real image observations (Fig. 2). In a
DDDAS sense the executing application is DIRSIG and new imagery are used
to modify the DIRSIG inputs to modify the scene. We use the OSM information
for constructing a scene and modify the scene with objects, like trees, to occlude
the ground (Fig. 1). The proposed process will aid in object tracking systems
from remote imagery, where objects moving in and out of occluded regions in a
scene limits tracking performance. This paper considers the occlusion challenge
in the task of detecting and tracking vehicles from a remote imaging perspective
and uses scene simulation to overcome some of the challenge.

Fig. 2: Proposed framework for scene occlusion identification, with focus on roads
and objects that may occlude the road network.

2 Related Work

Hang et al. used attention-aided CNN’s (spectral and spatial sub-networks) for
hypersepctral image classification of urban environments using the HyRANK
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dataset [5]. For moving object detection in aerial imagery, Palaniappan et al.
utilizes background subtraction and depth mapping of tall structures that may
occlude moving objects to reduce false positives due to parallax [10].

Since there are no publicly available video-rate hyperspectral datasets, simu-
lated hyperspectral imagery is a viable method for constructing a hyperspectral
dataset with a high framerate. There are handful of software approaches ca-
pable of creating hyperspectral imagery, such as: DIRSIG [2, 3], MCScene [12],
CHIMES [15], and CameoSim [7]. We use DIRSIG to generate our simulated
hyperspcetral imagery because it is a physics based renderer with an estab-
lished history of publications, and it can accurately model radiation propagation
through atmospheric modeling with MODTRAN [1].

Han et al. used DIRSIG to adjust atmospheric and environmental condi-
tions for physics based data augmentation of simulated remote sensing imagery
to train CNN’s in vehicle detection [4]. Uzkent et al. modeled vehicle motion
through a DIRSIG urban scene at various observation altitudes for object de-
tection and tracking [14]. Kemker et al. used a DIRSIG desert scene to increase
performance for semantic segmentation applications [6]. AeroRIT annotated all
pixels in a hyperspectral aerial flight line over a college campus, initiating a
baseline for use in hyperspectral semantic segmentation [11]. Mulhollan et al.
collected the hyperspectral paint signature of over 450 vehicles using a calibrated
drone mounted hyperspectral sensor, to aid in creating simulated hyperspectral
imagery with a wide variety of vehicle reflectances [8].

3 On-the-fly Adaptations

Detecting and tracking a target vehicle with hyperspectral imaging through con-
gested streets in an urban environment is a complex task. To aid in the task,
we propose to utilize a-priori knowledge of the scene along with raw imagery
to obtain additional geometric information from a 3-D perspective (Solution
1: Dynamic Metadata Integration). Metadata resources such as OpenStreetMap
provide us with geo-rectified road layouts and land cover materials, which can
assist in detecting occluded regions and provide probable locations for an oc-
cluded vehicle to reappear. The OpenStreetMap geographical land cover infor-
mation initializes our scene, and the simulated model of the scene will update
in regions of the scene where incoming real data are significantly different than
the existing simulated model. Other sources of information such as the posi-
tion and orientation of the imaging platform, position of the sun in the sky,
and updated weather reports, all provide valuable information in predicting the
expected spectral signature of the vehicle of interest.

3.1 Tackling Atmospheric Changes

A persistent bottleneck in object detection and tracking is the public availability
of hypersepctral data. Hyperspectral cameras that can collect data at approx-
imate video frame rates are rare and obtaining hyperspectral images from an
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airborne platform is costly and limited to flights in optimal weather conditions.
Using physics based simulated imagery is a pragmatic method of acquiring a
large hyperspectral video dataset of vehicles travelling through an urban envi-
ronment. We use DIRSIG to generate our simulated hyperspectral imagery. This
can alleviate data limitations and 1) provide pixel-wise ground truth data of all
contents in the scene, 2) control for biases that often persist in real image data
(such as weather condition and object orientation), and 3) provide a capability
to create a scene with multiple imaging modalities. A simulated dataset also
provides an automated emthod to tag environment based events such as the
vehicle being occluded, shadowed, or contain glint, which we expect will make
vehicle detection and tracking performance less dependent on atmospheric and
environmental conditions.

Fig. 3 demonstrates the need to dynamically adjust the expected spectral
signature of the vehicle as the scene changes over time. We observe a target ve-
hicle in simulated hyperspectral imagery under two different weather conditions
and five different airborne platform observation angles. Sunny afternoon obser-
vations of the light blue vehicle’s spectral radiance are shown in orange, and
same vehicle’s spectral radiance observed in partly cloudy weather is shown in
blue. The large difference in the signal amplitude demonstrates the dependence
of target appearance on the illumination conditions (weather) and the angle at
which the target is observed. Thus, it is important to update the expected target
vehicle spectral radiance based on a-priori knowledge of the scene to improve
performance of hyperspectral vehicle detection (Solution 2: Dynamic Signal
Adaptation).

3.2 Dynamic Scene Reconstruction

Instead of an exhaustive training approach where a large hyperspectral dataset
is collected of hundreds of vehicles from countless illumination conditions, ob-
servation angles, and occlusion events, we propose a DDDAS framework that
utilizes physics based simulated hyperspectral imagery to predict how a tar-
get vehicle would appear to a real airborne imaging platform. We demonstrate
that a physics based approach to hyperspectral vehicle detection can reliably
locate a vehicle in complex urban environments, where illumination changes and
occlusion events can often occur.

For occlusion detection, we first use OSM and the IMU-GPS positioning data
of the aerial hyperspectral imaging platform to create a bare physics based sim-
ulated scene, where only on the ground materials such as grass, roads, walkways,
and building footprints are geo-spatially placed based on OSM tagging. We sim-
ulate our image to look as if there were no vehicles or vertical occluding objects
such as trees or buildings present in the scene. We ignore the land topography
and use a planar surface to represent the ground for simplicity, but provisions
are available to account for major changes in the topography.

In the real world, our airborne imaging platform collects a hyperspectral
image of the scene, which may include any number of vehicles and occluding
objects that are currently not populated in our physics based model. We update
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Fig. 3: Demonstration of a vehicle’s spectral radiance dependence on atmo-
spheric/weather conditions and image observation angle. It is also shown that
expected glint on the vehicle can be modeled with accurate simulations of at-
mospheric conditions and observation angle.

the position and orientation of our simulated platform to best match with the
latest position of the real image platform when the last frame was captured. We
also process the data to geo-rectify the image and convert the pixel values from
digital counts to physical units such as spectral radiance (Solution 3: Dynamic
Scene Renderings).

To convert the data to physical units, we perform a lab calibration of the
sensor to measure its spectral responsivity curve. The spectral responsivity curve
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paired with updated capture parameters on the airborne platform such as inte-
gration time, dwell time, and dark current provide enough information to calcu-
late sensor reaching radiance

Lλ = (DCi −DCdark) · Eλ
DC

· 1

π
, (1)

Where Lλ is spectral radiance at the sensor, Eλ

DC is the spectral irradiance per
digital count obtained through a lab measurement of the sensor’s responsivity
curve, and DCi and DCdark are digital counts with incident light and dark
current respectively.Spectral calibration of the sensor and converting image data
to physical units such as spectral radiance allows us to compare our simulated
physics based image with the imagery captured with a real hyperspectral sensor.

4 Results

To detect and track a vehicle using its spectral radiance in a scene containing
occulsions, we use a DDDAS framework to predict occluded regions in the scene
and update where and how we expect the target vehicle to look based on our
knowledge of the scene. Predicting occluded regions in a scene is an iterative pro-
cess as more data are collected. We provide a visualization of how the simulated
model of the scene can update through new observations by using a simulation
as an example. In Fig. 4 we show the ground truth change detection from the
initial OSM landcover simulation alongside a supervised classifier spectral angle
mapping image for change detection. The spectral classes used are asphalt and
vegetation with the spectral data of these classes sourced from real hyperspectral
imagery acquired from the same geometric location of the simulated scene.

Fig. 4: Simulated DIRSIG scene with trees (left) and an occlusion and shadow
mask ground truth image (center) showing all occluded and shadowed pixels
in the scene in white, with spectral angle classification used to detect change
between OSM terrain and the simulated image.

To evaluate object detection and tracking performance in dynamic adapting
environment that is full of occlusions, we construct a simulated dataset that
contains labeled ground truth information such as the paint color, vehicle make
and model, the location of the vehicle using bounding boxes, and also we tag if
the vehicle is occluded or visible for each image frame. This simulated dataset
is useful to reinforce the logic of occluded objects such as vehicles because it
provides examples of vehicles that exist but are not currently visible due to oc-
clusion. We can utilize this simulated dataset along with our existing knowledge
of the scene (road networks and occluded regions) to learn where to look in the
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image to redetect an occluded object, and with a DDDAS feedback loop can
guide the airborne platform to a new location in the sky where it has a higher
probability of detecting the object unoccluded.

Fig. 5: Ground truth bounding boxes of a target vehicle moving through a simu-
lated scene with occlusions caused by trees. This provides ground truth location
of vehicles that are not directly observable due to line of sight obscurations.

5 Conclusion

We use a DDDAS approach to dynamically update a physics based hyperspectral
simulated scene to the presence of occluded regions as new image information and
metadata are provided. Detecting occluded regions in a scene aids object track-
ing and detection applications in complex urban environments, where moving
objects vacillate between being obscured and visible. For hyperspectral detection
of vehicles, we use simulated imagery to predict the expected signature of the
vehicle’s surface with atmospheric modeling and known geometric position of the
imaging platform. We also construct a labeled simulated hyperspectral dataset
with bounding boxes around each vehicle present in the scene, including ground
truth location of vehicles that are occluded and undetectable in the raw imagery.
This dataset will be used to train dynamically adapting detection algorithms to
make vehicle detection and tracking applications more robust to occlusions, and
in DDDAS framework can reposition an airborne sensor to a line of sight where
the target vehicle is no longer occluded.
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