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Abstract. As a step in a Dynamic Data-Driven Applications Systems
(DDDAS) method to characterize the background in a vehicle tracking
problem, we extend the application of deep learning to a hyperspec-
tral dataset (the AeroRIT dataset) to evaluating network uncertainty.
Expressing uncertainty information is crucial for evaluating what addi-
tional information is needed in the DDDAS algorithm and where more
resources are required. Hyperspectral signatures tend to be very noisy,
when captured from an aerial flight and a slight shift in the atmospheric
conditions can alter the signals significantly, which in turn may affect the
trained network’s classifications. In this work, we apply Deep Ensembles,
Monte Carlo Dropout and Batch Ensembles and study their effects with
respect to achieving robust pixel-level identifications by expressing the
uncertainty within the trained networks on the task of semantic segmen-
tation. We modify the U-Net-m architecture from the AeroRIT paper
to account for the frameworks and present our results as a step towards
accounting for sensitive changes in hyperspectral signals.
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1 Introduction

Instead of solely modeling vehicle movement or focusing on vehicle appearance
for a vehicle tracking problem, we are working on adaptively modeling the back-
ground in a DDDAS [4] framework using hyperspectral data. This allows the pos-
sibility of identifying potential confusers and modifying the detection or tracking
strategy. In this paper we describe efforts to characterize the background and
the uncertainties in a classification problem. A fair amount of effort has been
invested in applying deep learning methodologies to hyperspectral imagery for
the purpose of learning scene representations towards aerial object detection
and tracking [13, 17, 18]. In this paper, we use the AeroRIT data set released
in with SegNet and U-Net networks [1, 13, 16] trained for the task of seman-
tic segmentation. However, AeroRIT also comes with the limitation of being a
single flight line captured under clear atmospheric conditions. If the same set
of trained networks are used to run inference on a similar dataset but under
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different atmospheric conditions, the outputs will, more than likely, vary. We vi-
sually verify this claim by applying one of the networks established in the paper
(U-Net-m, discussed further in Sec. 3.2) to another flight line captured under
cloudy atmospheric conditions in Fig. 1. We would ideally pre-process the im-
ages to ensure no atmospheric occlusions are present in the scene - for example,
a cloud shadow removal algorithm, however we use this snapshot as a particular
example to illustrate our goal in this paper. We observe that the network fails
to recognize the correct set of classes in key areas of interest - for example, the
region around the circular roundabout is predicted to be a building instead of
a road. This can affect the flow of down-streaming tasks dependent on decision
trees - do we want to look for vehicles at pixels classified as buildings? While
the straight forward answer is a No, the approach can be altered if we could also
be privy to information about the network’s confidence (viz-a-viz, uncertainty)
of the pixel’s classification. This information may help in creating more robust
inferences as other networks in down-streaming tasks would be aware of the
prediction’s uncertainty and can dynamically adapt to account for variations.

(a) (b) (c) (d)

Fig. 1: Roundabout section from AeroRIT under sunny and cloudy atmospheric
conditions. We observe the output of a network trained on the clear flight line to
its cloud-occluded counterpart, (c)-(d), (e)-(f) respectively. The labels are roads
(blue), cars (ivory), buildings (red) and vegetation (green).

We train deep networks by minimizing the difference between the networks’
prediction and the true distribution of labels and during evaluation, use the
learnt set of weights for classification by selecting the class label correspond-
ing to the maximum probability. However, this approach does not provide any
information about the network’s uncertainty of the predictions. Kendall et al.
applied Bayesian deep learning to obtain the network’s uncertainty for depth
regression and semantic segmentation tasks [9, 10]. We adopt their approach in
this paper and analyze the effect of uncertainty quantification towards AeroRIT
scene understanding.

2 Related Works

There are many areas of research that can be used to estimate the network’s
uncertainty, the most popular being: 1) forming ensembles [1, 7, 8, 19], 2) varia-
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tional inference [2], and 3) K-FAC Laplace approximation [15]. We focus on the
first type of approach - forming ensembles as it is relatively simpler to follow
and easier to implement compared to the other areas. The core idea is to train
a bunch of networks with different initializations on the same set of data and at
test time, evaluate the final predictions as an average of the ensemble networks
predictions. Gal and Ghahramani showed that using dropout across layers of
the convolutional neural network (CNN) can act as approximate Bayesian in-
terpretation [7]. This facilitates training a single network and using dropout at
test time to create model ensembles. Kendall et al. further demonstrated that
applying dropout at selective layers of the network instead of all layer further
improves the predictions [9]. Lakshminarayanan et al. trained different networks
separately for forming ensembles [11], and Huang et al. obtained sets of networks
by taking snapshots at different intervals using cyclic learning rate schedule [12].
Recently, Wen et al. proposed to use multiple rank-1 matrices along with the
core weight matrix to form ensembles as an alternative to existing methods [19].
Uncertainty estimation approaches [3, 6, 14] have already been applied in other
areas of remote sensing. In this paper, we adopt deep ensembles [11], Monte-
Carlo dropout based ensembles [1, 7] and batch ensembles [19] for estimating
network uncertainty.

Semantic 
Segmentation

Network

Input Image

Classifications Uncertainty

Classifications

Fig. 2: Schematic overview of the uncertainty based pipeline. The standard flow
is shown with blue arrows where the trained network predicts the pixel-wise
labels. We augment the flow with a ensemble learning framework (orange) that
eventually accounts for the uncertainty within the network. Brighter areas cor-
relate to larger uncertainty - and as image chips corresponding to the racetrack
are not present in the training set, the network is overall highly uncertain of its
prediction.
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3 Estimating Uncertainty

3.1 Types of Uncertainties

Kendall and Gal expressed uncertainty into two subtypes - Aleatoric and Epis-
temic, in accordance with Kiureghian and Ditlevsen [5]. Aleatoric uncertainty
corresponds to noise that is data-independent, for example, sensor noise, envi-
ronmental noise, and cannot be reduced even if more data is collected. Epis-
temic uncertainty can be expressed as more data-dependent and model-based,
and hence is widely modelled using ensembles. In our paper, we focus on epis-
temic uncertainty and use ensembles for estimation. Fig. 2 outlays the overall
framework.

Input

Output

(a) (b) (c) (d)

Fig. 3: All settings used in the paper: (a) U-Net-m, (b) 4 deep ensembles for [11],
(c) MC-Dropout applied on the convolutional maps of (a) with Spatial Dropout,
(d) Batch Ensembles with two sets of rank-1 matrices on weights of (a).

3.2 Network review

We use the U-Net-m architecture developed in AeroRIT [13] for its better perfor-
mance among other networks. It contains 2 downsampling convolutional blocks,
followed by a bottleneck layer and 2 upsampling blocks with skip connections.
Each convolutional block contains two sets of convolutional kernels of 3 × 3, a
Batch-Normalization layer and ReLU activation. We represent this structure in
Fig. 3 (a).

3.3 Deep Ensembles (DE)

This approach, proposed by Lakshminarayanan et al. [11], averages the predic-
tions across networks trained independently starting from different initializations
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(Fig. 3 (b)). Every member of the deep ensembles is trained with the same hyper-
parameters as discussed in Sec. 4.1. At test time, we average the predictions to
obtain the final set of predictions. Following all approaches that estimate uncer-
tainty, we use entropy of the resulting distribution as the measure of uncertainty
and use it in all the figures throughout this paper.

3.4 MC-Dropout (MCD)

Monte-Carlo Dropout is the less training-time alternative to Deep Ensembles.
Instead of training separate copies of networks multiple times, Gal et al. [7, 9]
proposed to inject Bernoulli noise in form of Dropout over the activations of the
network weights. In practice, we observed that applying spatial dropout instead
of conventional dropout produced more better uncertainty estimates (Figs. 3
(c), X). Spatial dropout randomly drops an entire feature map from the list of
feature maps as compared to individual elements in conventional dropout. We
use the same set of hyperparameters as discussed in Sec. 4.1. At test time, we
average the predictions obtained across a fixed set of runs with dropout enabled
to obtain the final set of predictions.

3.5 Batch Ensembles (BE)

This approach was proposed by Wen et al. and works as an alternative to us-
ing Dropout for ensembles (Fig. 3 (d)). The core idea is to have a single slow
matrix (W ), which corresponds to the 2-D convolution kernel weight and two
corresponding rank-1 matrices (ri, si) that act as fast matrices:

Wi = W ◦ Fi, where Fi = ris
>
i , (1)

and hence, we obtain Wi as the corresponding weight for ensemble i. The
number of ensembles is equal to the number of sets of rank-1 matrices used and
is very efficient in terms of model storage. During evaluation, similar to above,
we repeat the mini-batch to correspond with total number of ensemble members
and average the predictions.

4 Experiments and Results

4.1 Hyperparameters

We use all 51 bands available in the AeroRIT dataset chips in this paper - 31
visible and 20 infrared bands. All chips are clipped to a maximum of 214, and
normalized between 0 and 1, before forward passing through the networks. All
networks are initialized with Kaiming init, and the rank-1 matrices for BE are
initialized to have a mean of 1 and standard deviation of 0.5 in accordance with
the original paper. We use an initial learning rate of 1e−2: for DE and MCD,
we train for 60 epochs with drops of 0.1 at 30, 40, 50th and for BS, we train for
120 epochs with drops of 0.1 at 50, 80, and 100th epoch. We train with standard
cross-entropy loss (CE) for DE and MCD and use weighted CE only for the BE
approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 4: Visualization of uncertainty estimates on the sunny and cloudy round-
about scenes from Fig. 1. (a) and (d) are the RGB rendered images, (b) and
(e) are the corresponding network predictions while, (c) and (f) are the uncer-
tainty maps. We also visualize an instance from (g) the AeroRIT test set with
(h) corresponding ground truth label, (i) network predictions and (j) uncertainty
map.

4.2 Results

We observe visual improvement over the scenes presented in Fig. 1 using 10 runs
with MCD ensembles. The network predictions for the roundabout area show
high uncertainty (Fig. 4 (f)) which is desired in this setting. This information can
be used by down-steam tasks which can dynamically adapt to ensure continuity.
Further, we also observe that the network uncertainty estimates are high for row
Fig. 4 (g) as the road crossing has been incorrectly classified as belonging to the
vehicle category. We also observe uncertainty around the boundaries of classes
- this can possibly be due to the presence of mixed pixels. Table 1 shows us
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Table 1: Results of techniques discussed in Sec. 3 compared to the baseline
network from AeroRIT [13].

Standard

Network

Deep

Ensembles

Monte Carlo

Dropout

Batch

Ensembles

mIOU 70.62 71.41 ± 2.48 72.45 ± 1.56 69.05 ± 3.45

that all ensemble techniques are able to achieve near-par or higher performance
than the conventional counterpart. We use mean IOU (mIOU) as the metric of
interest (following [13]) and do not discuss metrics pertaining to uncertainty es-
timations (for example, Expected Calibration Error) for the scope of this paper.
mIOU is the class-wise mean of the area of intersection between the predicted
segmentation and the ground truth divided by the area of union between the
predicted segmentation and the ground truth. To generate the results, we ran all
ensembles 10 different times, with varying number of models for DE and MCD.
We found 4 to be a sufficient set of models for DE and BE and 10 for MCD in
our ablation studies.

5 Conclusion

We presented the extension of uncertainty estimation to hyperspectral remote
sensing imagery as a first step towards dynamic scene adaptation under varying
atmospheric conditions. Our next set of questions are as follows: 1) can we reduce
uncertainty in mixed pixel areas to obtain a much precise map that can be passed
to down-stream tasks ? and 2) can we decrease the inference speed to get as close
to a single forward pass of a network ? 3) is it possible to design an end to end
framework to adaptively shift between sensor modalities using uncertainty as an
input?
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